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Abstract

Existing methods for sequentially analyzing count data typically utilize a discounting strategy,
where the contribution of past observations to parameter updates diminishes with elapsed time. Dis-
count factor techniques offer an intuitive approach to sequentially updating parameters with weighted
contributions from all previously observed data; however, when the time series undergoes a sudden
change and the observed count significantly jumps, parameter estimates are slow to adapt, as they are
heavily informed by data observed prior to the structural break. Immediately following such bursts,
predictive performance degrades. In this study, we introduce an augmented Poisson-gamma state-
space (PGSS) model whose state evolution structure is flexible and responsive to sudden changes
in the level of counts, focusing on consumer demand settings where sequential and online learn-
ing/forecasting are of great interest. Such adaptability is achieved by augmenting the state vector of
the PGSS model with an additional state variable for a time-varying discount factor. We develop an
efficient particle-based estimation procedure that is suitable for sequential analysis, allowing us to esti-
mate dynamic state variables and static parameters via closed form conditional sufficient statistics. To
illustrate how the state-augmented PGSS model performs with data that exhibit bursts, we present re-
sults from a simulation study and two case studies to monitor and forecast web traffic and ridesharing
demand. We show that – in the presence of structural breaks – our proposed approach yields superior
sequential model fit and predictive performance compared to viable alternatives.

1 Introduction

Structural changes in count-valued time series are pervasive in the digital economy. For instance, demand
for Uber rides may exhibit a sudden burst at uncommon times due to the conclusion of a sporting event
or concert. Surges in web traffic on Facebook, Instagram, Twitter, and Google – while often due to
predictable intraday variation – are occasionally driven by unanticipated news events. At call centers and
online help desks for insurance companies, unexpected natural disasters and severe weather may result
in dramatic increases in the number of customers requiring service. When business operations of these
web platforms depend on accurate short-term predictions of consumer demand, the ability to quickly
identify structural breaks and adjust forecasts of customer counts is critical.

Markov switching models have traditionally been used to model regime changes in time series data;
however, on e-commerce platforms, consumer demand changes rapidly, and resources are re-allocated
frequently. In high-frequency applications, the computational cost of fitting Markov switching models is
prohibitive. Balancing model complexity with timely decision-making necessitates novel modeling and
computational strategies for high-frequency, bursty count data.

Forecasting bursty count data in high-frequency settings poses a number of statistical and computa-
tional challenges. The primary challenge is to flexibly model temporal dependence in a way that facilitates
rapid and online estimation of model parameters. There are two main approaches for modeling count
time series: The first assumes that time-varying counts are generated by a stationary stochastic process
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(Freeland and McCabe, 2004); the second approach models temporal dependence via state-space models
and allows for the possibility that counts are non-stationary (Harvey and Fernandes, 1989; Fruhwirth-
Schnatter and Wagner, 2006; Gamerman et al., 2013; Chen et al., 2018b,a; Aktekin et al., 2018; Berry
and West, 2018; Glynn et al., 2018). The state-space approach exploits the conditional independence of
counts given that state parameters themselves follow a stochastic process, inducing temporal dependence
in counts marginally; see Prado and West (2010) and Davis et al. (2015) for recent reviews of state-space
models and time series of counts.

The Poisson-gamma state-space (PGSS) model (Aktekin et al., 2013; Chen et al., 2018b) is a popular
choice for modeling time-varying count data, since the Poisson-gamma conjugacy admits online, closed-
form calculation of posterior and forecast distributions. The PGSS model is one in a broader class of
gamma-beta random walk models for Poisson rates. The gamma-beta state transition was first introduced
by Smith and Miller (1986) for state-space models with exponential likelihoods and was later utilized to
model stochastic volatility in financial markets by Uhlig (1994, 1997). Recently, the same state transition
structure has been used to model a general class of non-Gaussian state space models (Gamerman et al.,
2013). One attractive feature common to gamma-beta random walk models is that the beta-distributed
innovations in the state equation yield a state variable that is marginally gamma-distributed (assuming
that the initial state prior is also gamma-distributed), leading to closed-form updates of posterior and
forecast distributions in the PGSS model. While online, analytically available posterior and predictive
distributions are attractive features, the single-process PGSS model is unable to capture sudden bursts
or regime switches in counts. The lack of flexibility in the PGSS model stems from the static discount
parameter used in defining state transitions.

In this paper, we develop the state-augmented PGSS (sa-PGSS) model, an integer-valued state-space
model whose structure flexibly adapts to newly observed counts and admits a sequential Monte Carlo
algorithm for online updates of posterior and one-step-ahead predictive distributions. It advances the lit-
erature on Poisson-gamma state-space (PGSS) models by introducing a mechanism to sequentially adapt
model structure as called for by data. Specifically, we augment the state-variable in the PGSS model with
a dynamic discount factor that enables rapid model adaption to structural changes in observed counts.
The methodological novelty of our approach stems from this state variable augmentation, which increases
the flexibility of the PGSS model while allowing us to develop a fast estimation algorithm suitable for se-
quential parameter learning and demand forecasting. The sa-PGSS model adapts to streaming counts
so that during bursts in demand, Bayesian prior distributions are more diffuse and forecasts rely more
heavily on recently observed data.

The sa-PGSS model requires fast and efficient computational strategies for online updates of posterior
and predictive distributions. As pointed out by Storvik (2002) and Carvalho et al. (2010a), traditional
Markov chain Monte Carlo (MCMC) methods, especially the forward filtering backward sampling (FFBS)
algorithm of Carter and Kohn (1994) and Fruhwirth-Schnatter (1994), are computationally expensive,
as state variables must be re-estimated each time new data is observed. With this in mind, we develop
a particle-based algorithm that allows us to update static as well as the dynamic (state) variables in
a fast sequential manner. The initial idea of particle filtering (PF) dates back to the work of Gordon
et al. (1993). Since then there have been several successful applications of the PF algorithm in various
settings such as those discussed in Carvalho et al. (2010b) for general mixtures, Gramacy and Polson
(2011) for Gaussian process models in sequential optimization, Lopes and Polson (2016) for fat-tailed
distributions, and Prado and Lopes (2013) for estimating parameters in autoregressive time series models.
One of challenges common to all PF applications is the particle degeneracy issue that arises in learning
static parameters. We overcome this issue by obtaining the conditional sufficient statistics for the static
parameters in a similar vein to the methods proposed by Storvik (2002); Carvalho et al. (2010a); and
Prado and Lopes (2013). For recent surveys of particle-based methods, we refer readers to the works of
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Lopes and Tsay (2011) and Singpurwalla et al. (2018).
We illustrate the utility of the sa-PGSS model with three case studies. First, we investigate the model’s

ability to adapt to structural changes in simulated data (Section 5.1). Second, we fit the sa-PGSS model to
traffic on the Fox News website, demonstrating improved one-step-ahead forecasts compared to the static
discount factor in existing PGSS implementations. Third, we use sa-PGSS to forecast Uber ride requests
in New York City. While we discuss these case studies in detail, it is important to note that our approach
is general and can be applied to many other settings where forecasts of relatively high-frequency and
bursty count data are of interest.

The remainder of our paper is structured as follows. In Section 2, we summarize key components of
the PGSS model with a static discount factor. We highlight model properties and illustrate the inability of
the base PGSS model to rapidly adapt to structural breaks with the Fox News web-traffic data. In Section
3, we introduce the state augmented sa-PGSS model with an autoregressive process for the dynamic
discount factor. In Section 4, we develop a custom particle-based algorithm for estimating both static
and dynamic parameters in the sa-PGSS model. Section 5 discusses the numerical analysis of simulated
data, web traffic from Fox News, and Uber demand in New York City. Section 6 concludes with a brief
summary and discussion of future directions.

2 Poisson-Gamma State Space (PGSS) Model

In this section, we introduce necessary notation and the conjugacy preliminaries for the standard PGSS
model, which yields tractable filtering as well as one-step-ahead predictive densities. Let Nt for t =
1, . . . , T represent a univariate time series of counts and Dt = {N1, . . . , Nt} a collection of these counts
until time t. The likelihood (observational equation) is defined by the Poisson distribution,

(Nt|θt) ∼ Po(θt), (1)

where, given θt, Nt is assumed to be conditionally independent of Nt−1. Temporal dependence of Nt

on Nt−1 is governed by the stochastic evolution of θt−1 to θt. The state transition (evolution) equation
follows a multiplicative gamma-beta random walk. Conditional on θt−1 and Dt−1,

θt = θt−1ηt/γ, ηt ∼ Beta(γαt−1, (1− γ)αt−1), (2)

which implies a state transition equation given by

(θt|θt−1, γ,Dt−1) ∼ ScaledBeta(γαt−1, (1− γ)αt−1), (3)

for θt ∈ (0, θt−1/γ), αt−1 > 0, and 0 < γ < 1. The shape parameter, αt−1, is the function of the past
observations Dt−1 in general, and its specific functional form is given later. We note here that the state
transition density (3) is a function of the past observations, Dt−1, unlike traditional linear state space
models. Here, γ is referred to as the discount factor and controls the persistence of the state variables.
For instance, when γ ↑ 1, θt and θt−1 will be similar (strong dependence and persistence). Whereas, when
γ ↓ 0, θt and θt−1 will likely be less similar, implying more volatile state dynamics (weak dependence and
persistence).

Various versions of the PGSS model have been considered in the literature. Gamerman et al. (2013)
consider a general class of non-Gaussian state-space models where the Poisson sampling model appears
as a special case. Aktekin et al. (2013) consider it for modelling mortgage default counts, Chen et al.
(2018b) utilize it to model web traffic in network flow data, and Aktekin et al. (2018) extend it to account
for multivariate time series of counts. Further details of the PGSS model can be found in these papers
and the references therein. In what follows, we provide a summary of some of the relevant results of the
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PGSS model. Given the initial state prior of θ0 ∼ Ga(α0, β0), we can show (i) the time t − 1 posterior
distribution (θt−1|γ,Dt−1) is gamma-distributed

(θt−1|γ,Dt−1) ∼ Ga(αt−1, βt−1); (4)

(ii) the prior distribution for the state variable at time t is a discounted version of equation (4), inflating
the prior variance of θt relative to the posterior at t− 1,

(θt|γ,Dt−1) ∼ Ga(γαt−1, γβt−1); (5)

(iii) the time t posterior is also gamma-distributed

(θt|γ,Dt) ∼ Ga(αt, βt), (6)

where αt = γαt−1+Nt =
∑t−1

s=0 γ
sNt−s+γtα0 and βt = γβt−1+1 = 1−γt

1−γ +γtβ0; observe that αt combines
a γ-discounted shape parameter from the posterior of θt−1 and the most recently observed Nt, while βt
increments the γ-discounted rate parameter from the posterior of θt−1 by one to reflect an additional data
point; (iv) the one-step-ahead predictive distribution is Negative Binomial,

(Nt|γ,Dt−1) ∼ NegBin(γαt−1,
γβt−1

γβt−1 + 1
). (7)

Conditional on γ, the filtering density p(θt|γ,Dt) and the one-step-ahead predictive density p(Nt|γ,Dt−1)
are available in closed form, which makes the PGSS model attractive for practical applications of stream-
ing count data. Another noteworthy property of the PGSS model is the closed form availability of the
marginal likelihood that can be used to estimate static model parameters like γ. Typically these marginal
likelihoods cannot be obtained analytically outside of linear and Gaussian models such as the well-known
dynamic linear model (West and Harrison, 1986, 1997). With the negative binomial one-step ahead den-
sities in 7, we can construct the marginal likelihood from the product

p(DT |γ) =
T∏
t=1

p(Nt|γ,Dt−1) =
T∏
t=1

Γ(γαt−1 +Nt)

Nt!Γ(γαt−1)

(
γβt−1

γβt−1 + 1

)γαt−1
(

1

γβt−1 + 1

)Nt

. (8)

If we do not fix γ but treat it as a parameter to be estimated, the sequential analysis of posterior and
predictive distributions becomes more complicated. For any given continuous prior choice of γ, it is not
possible to obtain an analytically tractable posterior analysis. However, given (8) we can obtain a discrete
posterior distribution for γ if we assume a discrete prior defined over the region (0, 1). Alternatively, we
can compute a point estimate of γ by maximizing (8). In both cases, the computations are straightforward
and fast.

When γ is static, regardless of whether it is treated as a tuning parameter or a parameter to be es-
timated, the PGSS model is slow to adapt to structural changes in counts. Such a structural change is
illustrated in Figure 1a, where a sudden surge in web traffic on the Fox News website occurs at approxi-
mately 9:25 AM (a similar graphic is presented in Figure 14 of Chen et al. (2018b), which contains a full
PGSS analysis of the Fox News data). Observe that the median of the one-step-ahead predictive distri-
bution (solid green line) fails to rapidly adapt to the surge. In fact, the predictive distribution from the
PGSS model effectively smooths the web traffic data due to the discount structure in (7). When volume
surges at 9:25, the PGSS model underpredicts traffic, and when the number of visitors drops after 9:45
AM, the PGSS model overpredicts traffic. In both directions, the predictions are sluggish in responding
to rapid changes in observed data. This is largely due to the static treatment of γ. During the stable
period from 9:00 to 9:25, the data provides evidence for a reasonably high value of γ, and past counts
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Figure 1: Left: The one-step ahead predictive distribution of Nt (web traffic flow data with 30 second
time intervals) with static γ. The optimal value of γ is computed by the Empirical Bayes method that
makes use of the closed form availability of the marginal likelihood. The solid line shows the median of
the one-step-ahead predictions and the dashed lines represent the 90% predictive intervals. Right: The
stationary marginal density of γt for different choices of hyperparameters: (µ, φ, σ2) = (logit(0.9), 0.9, 0.5)
(red), (µ, φ, σ2) = (logit(0.9), 0.8, 0.5) (blue) and (µ, φ, σ2) = (logit(0.9), 0.9, 0.7) (green).

significantly contribute to forecasts Nt+1|γ,Dt. This feature – a strength from 9:00 to 9:25 – becomes a
weakness when a surge in traffic occurs. The high value of γ gives significant weight to past counts in
one-step-ahead forecasts, but the forecasts fail to adequately adapt to the structural change in the time
series. At 9:25, a small γ is needed so that less information is inherited from past counts and forecasts
rapidly adapt to recently observed data. We view this static γ as a major shortcoming of the PGSS model.
In Section 3, we augment the state variable with a dynamic discount factor γt that adaptively weights
previous information based on predictive errors, providing increased model flexibility when structural
changes occur.

3 The state-augmented PGSS model

In this section, we extend the PGSS model to account for dynamic changes in the discount factor, γ. In
doing so, we preserve the properties of the base PGSS model conditional on the dynamic discount factor.
The motivation for modeling γ as dynamic stems from the lack of adaptability of the PGSS model to
sudden shifts in the time series of counts as evidenced by the behavior from Figure 1a. This adaptability
can be achieved by allowing γt to be relatively large in stable regions and small in regions where sudden
shifts occur without the need for prospective intervention as in the case of Chen et al. (2018b).

Assuming the same Poisson observation equation (1), we define the state evolution conditional on
γ1:t = {γ1, . . . , γt}, as p(θt|θt−1,Dt−1, γ1:t) which will be

(θt|θt−1,Dt−1, γ1:t) ∼ ScaledBeta(γtαt−1, (1− γt)αt−1) where θt ∈ (0, θt−1/γt). (9)

We note that the state equation depends on all the past observations Dt−1 and discount factors
γ1:(t−1) whose contributions are embedded in αt−1. Assuming the same initial state prior as before,
θ0 ∼ Ga(α0, β0), the online state updating conditional on γ1:t will be (θt|γ1:t,Dt) ∼ Ga(αt, βt) where

αt = γtαt−1 +Nt,

βt = γtβt−1 + 1
(10)

5



Similarly, the one-step ahead predictive density can be shown to follow

(Nt|γ1:t,Dt−1) ∼ NegBin
(
γtαt−1,

γtβt−1
γtβt−1 + 1

)
. (11)

The dynamic nature of the discount factors can be described by any Markovian process such as

(γt|γ1:(t−1)) ∼ p(γt|γt−1),

which needs to be selected carefully such that it facilitates sequential estimation but at the same time is
flexible enough to increase the adaptability of the PGSS model. With this in mind and the fact that γt’s
are defined between 0 and 1, we consider a logistic transformation of the following form

gt = logit(γt) = log
γt

1− γt
,

where the transformed series, g1, g2, . . . , gt−1, gt, . . ., follows a first order autoregressive model as in

gt = (1− φ)µ+ φgt−1 +N(0, σ2). (12)

We take a fully Bayesian point of view and assume priors on the above AR(1) triplet, (µ, φ, σ2), and
allow them to be updated sequentially in the face of new count data, substantially increasing temporal
adaptability of the PGSS model. To be more specific, for another parametrization φ0 = (1− φ)µ, φ1 = φ
and w = σ−2, we assume the following normal-inverse gamma distribution as the hyper-prior

p(φ0, φ1, w|D0) = N(φ0, φ1|m0, C0/w) Ga(w|a0/2, b0/2),

As we see in the next section, this prior is conditionally conjugate in our model.
If the distribution of g0 is g0 ∼ N(µ, σ2/

√
1− φ2), the gt process is stationary with marginal distribu-

tion gt ∼ N(µ, σ2/
√

1− φ2), which indirectly implies the stationary distribution of γt by inverse logistic
transformation. We show the implications of various values of (µ, φ, σ2) on γ and what they represent in
Figure 1b; the random variables are generated from the stationary normal distribution and transformed
into the exponential scale to draw the histograms.

While the discount factor is now allowed to be dynamically changing, it is preferable in many cases
that the value of γt is high and stable over time. Such a process is realized by choosing high µ, high φ
and small σ2, as in the red density function in Figure 1b. With µ decreased, we have the blue density in
the figure which is shifted, or less skewed, toward zero. The green density is obtained with larger noise
variance σ2 and more skewed; while concentrated around one, the probability mass also remains around
zero. Once posterior estimates of ĝit are obtained, γ̂it can be easily computed using the inverse-logit
transformation, γ̂it = logit−1(ĝit).

4 Sequential Estimation Using Particle Filtering (PF) Methods

In our proposed extension of the PGSS model, the new state vector consists of the (θt, γt) pair and
the static parameters vector is defined by ϑ = (µ, φ, σ). The full joint density of all model parameters
can be summarized via p(θ1:t, γ1:t, ϑ|Dt). However, as our main target is to sequentially update the
relevant parameters and to obtain one-step-ahead forecasts, our goal reduces to generating samples from
p(θt, γt, ϑ|Dt), which is not available in analytical form. Markov chain Monte Carlo (MCMC) and particle
filtering (PF) methods are the two options for generating samples from this density. As pointed out
by Storvik (2002), MCMC requires restarting each simulation as new data is observed, increasing the
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computational burden significantly as the dimension t increases in state space models. As our goal is fast
sequential online updating and prediction, we consider PF algorithms that are based on re-balancing of a
finite number of particles of the state posterior distributions proportional to the likelihood. As pointed out
by Carvalho et al. (2010a), estimating static parameters in sequential models is surprisingly difficult due
to potential particle degeneracy. A potential remedy is to use conditional sufficient statistics of the static
parameters when they are analytically available, as considered by Storvik (2002); Fearnhead (2002);
Carvalho et al. (2010a). As these conditional sufficient statistics for ϑ can be obtained analytically in our
model, we can devise a fast PF algorithm to generate samples from p(θt, γt, ϑ|Dt). In developing the PF
algorithm, we exploit three major features of our model: 1) Closed-form availability of the state filtering
density conditional on the dynamic discount parameters, 2) Closed-form availability of the marginal
likelihoods, and 3) Analytical tractability of the conditional sufficient statistics for the static parameters.

Our goal is to eventually obtain samples from p(θt, γt, ϑ|Dt) which can be achieved by augmenting
the density by adding αt, βt as

p(θt, γt, αt, βt, ϑ|Dt) = p(θt|γt, αt, βt, ϑ,Dt)p(αt, βt|γt, ϑ,Dt)p(γt, ϑ|Dt)
= p(θt|αt, βt,Dt)p(αt, βt|γt,Dt)p(γt, ϑ|Dt)

(13)

where p(θt|αt, βt,Dt) is a Gamma distribution with parameters αt, βt and p(αt, βt|γt,Dt) is not a known
density but can be computed via

p(αt, βt|γt,Dt) =

∫
p(αt, βt|γt, αt−1, βt−1,Dt)p(αt−1, βt−1|Dt)dαt−1dβt−1,

where p(αt, βt|γt, αt−1, βt−1,Dt) is a degenerate density with deterministic parameter updating given by
(10). We note here that to sequentially compute αt and βt, we would need samples from p(αt−1, βt−1|Dt)
which we discuss in the sequel (See the paragraph after the algorithm on page 10.).

The next step is to sample from p(γt, ϑ|Dt) which can be decomposed using a similar augmentation
approach via

p(γt, ϑ|Dt) =

∫
p(γt, γt−1, αt−1, βt−1, ϑ|Dt)dγt−1dαt−1dβt−1

∝
∫
p(Nt|γt, αt−1, βt−1,Dt−1)p(γt|γt−1, ϑ,Dt−1)p(ϑ|γt−1,Dt−1)× . . .

× p(γt−1, αt−1, βt−1|Dt−1)dγt−1dαt−1dβt−1,

where p(Nt|γt, αt−1, βt−1,Dt−1) is a negative binomial density given by (11), and p(γt|γt−1, ϑ,Dt−1) is the
state transition for γt given by (12). In addition, we can approximate the online posterior p(γt−1, αt−1, βt−1|Dt−1)
at t− 1 by S particles as

p(γt−1, αt−1, βt−1|Dt−1) ≈
S∑
i=1

wit−1δ{γit−1,α
i
t−1,β

i
t−1}

(γt−1, αt−1, βt−1),

where δ{x}(·) is the point-mass distribution at x and {wit−1}i=1:S are non-negative mixture weights whose
sum over i must be equal to one. The final step is to generate from the density p(ϑ|γt−1,Dt−1) to fully
implement the above sequential scheme. To do so, we utilize the conditional sufficient statistics updating
of ϑ which is available analytically in our model. After the reparametrization of the hyperparameters as
φ0 = (1− φ)µ, φ1 = φ and w = σ−2, we can use a bivariate normal-gamma prior as

p(φ0, φ1, w|D0) = N(φ0, φ1|m0, C0/w) Ga(w|a0/2, b0/2),
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for a given collection of prior parameters S0 = {m0, C0, a0, b0}. The likelihood function for the triplet
φ0, φ1, w is obtained via the AR(1) model

gt = φ0 + φ1gt−1 +N(0, σ2), (14)

and for all t, the conditional posterior would be

p(φ0, φ1, w|γ1:t,Dt) = p(φ0, φ1, w|St) = N(φ0, φ1|mt, Ct/w) Ga(w|at/2, bt/2), (15)

where the set of conditional sufficient statistics are given by St = {mt, Ct, at, bt} updated as a function of
St−1, gt, and gt−1 via

mt = mt−1 +Atet Ct = Ct−1 − qtAtA′t
at = at−1 + 1 bt = bt−1 + e2t /qt,

(16)

and

Gt =
[
1, gt−1

]
et = gt −G′tmt−1

qt = 1 +G′tCt−1Gt At = Ct−1Gt/qt.
(17)

The above approach can be implemented with a minor modification under the constraint on φ for station-
arity as in (Prado and Lopes, 2013). Namely, the prior and posterior distributions are truncated such that
the generated particles of φ that do not fall in the region (−1, 1) (or (0, 1)) are rejected in sampling. Con-
sequently, we can obtain samples from p(φ0, φ1, w|St−1) and in turn from p(ϑ|γt−1,Dt−1) that is required
for updating (13).

In what follows, we present our PF algorithm that is based on the sequential decomposition of model
parameters of interest summarized by (13). Our approach can be viewed as a combination of the auxiliary
particle filter (APF) of Pitt and Shephard (1999) with conditional sufficient statistics updating of static
parameters. Our PF algorithm can be summarized via the following steps:

Given a particle set (θit−1, γ
i
t−1, α

i
t−1, β

i
t−1, ϑ

i|Dt−1) with weights wit−1,

repeat the following step 1-6 for each j ∈ 1:S.

1. Resample an auxiliary index i(j) with probability
w
i(j)
t−1|t ∝ p(Nt|γ̂it , αit−1, βit−1,Dt−1)wit−1 for each i.

2. Propagate gjt from the state transition density,
N( (1− φi(j))µi(j) + φi(j)g

i(j)
t−1 , (σ2)i(j) ) and set γjt = logit−1(gjt ).

3. Resample using normalized weights
wjt ∝ p(Nt|γjt , α

i(j)
t−1, β

i(j)
t−1,Dt−1)/p(Nt|γ̂i(j)t , α

i(j)
t−1, β

i(j)
t−1,Dt−1).

4. Compute αjt = γjtα
j
t−1 +Nt and βjt = γjt β

j
t−1 + 1 and sample θjt from Ga(αjt , β

j
t ).

5. Update Sjt = f(St−1, γjt , γ
i(j)
t−1) via (16) and (17).

6. Sample ϑj from p(ϑ|Sjt ) given by (15).

Use the particle set (θjt , γ
j
t , α

j
t , β

j
t , ϑ

j |Dt) for the next time period t+ 1.
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We note here that in step 1, γ̂it is set equal to γit−1 as an estimator for γt (similar to the APF approach).
At the end of step 3, as a consequence of resampling, we obtain samples from p(γt, αt−1, βt−1|Dt) that are
used in updating αt and βt in step 4. We do not need to propagate θt from θt−1 as the conditional filtering
density is available analytically. An important feature of our sa-PGSS model is that the vector of past
discount terms, γ1:t, can be summarized by a lower dimensional vector (γt, αt−1, βt−1), thus reducing the
dimension of the state vector for γt’s to 3 from t. This avoids the need to generate from the t dimensional
state vector (can be achieved using a forward filtering and backward sampling (FFBS) step) and reduces
the computational burden significantly.

Hyperparameter Selection

The selection of hyperparameters in ϑ control the implied stationary distribution for γt. Assuming a
relatively strong prior on ϑ has practical advantages in realizing our prior belief that the discount factor
should be almost constant to avoid being overly flexible and overfitting, while allowing the decrease of
discount factor to be more adaptive only when absolutely necessary. For all of our numerical examples,
the hyperparameters of normal-inverse gamma prior in equation (15), or the initial values of sufficient
statistics for ϑ, are set at m0 = [(1 − 0.9)logit(0.9), 0.9]′, C0 = (0.05)2I2, a0 = 10 and b0 = 5. This prior
reflects our preference on the choice of (µ, φ, σ2) = (logit(0.9), 0.9, 0.5) whose implied stationary density
of γt is shown in Figure 1b. Observe in Figure 1b that with this set of hyperparameter choices, the prior
distribution favors γt values near one – implying persistent counts – but still allowing for the possibility
of γt values close to zero – implying less dependence in Nt on previously observed counts Dt−1. We
briefly comment on the implications of hyperparameters on the overall estimation path in our numerical
examples.

Particle Dimension and Effective Sample Size

Our experiments with the sa-PGSS model typically suggest that a particle size of N = 5, 000 was more
than sufficient in all the numerical examples. We also investigated the implications of using smaller
particle sizes (1,000, 2,000, and 3,000) on the estimation paths of both the state and static parameters
of our model and found no clear differences. We omit the details of these experiments to preserve space
in the narrative and use N = 5, 000 as a very conservative particle size in all our subsequent numerical
examples.

To assess the existence of potential particle degeneracy in the estimates obtained using our PF algo-
rithm, we also keep track of the the so called effective sample size (ESS) via

ESSt =
1∑N

i=1(w
i
t)
2

where wit represents the weight of particle i at t before the resampling step (if any). We note there that
1 ≤ ESSt ≤ N where lower values indicate evidence in favor of degeneration, and vice versa. The ESS
estimates can be used as a monitoring tool for assessing the need to resample at each point in time and
to detect anomalies (such as structural breaks or sudden bursts in data). We investigate the implications
of monitoring the ESS over time and how it can be used as a practical tool in our numerical examples.

5 Numerical Illustrations

In this section, we present three cases studies to illustrate the advantages of our sa-PGSS model: the first
case study presented in Section 5.1 is a simulated time series of counts that includes sudden bursts; the
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second case presented in Section 5.2 utilizes web traffic data from the Fox News Website; and the third
case presented in Section 5.3 forecasts demand for Uber rides. In these three case studies, we compare
online learning and forecasting results for various PGSS models from the literature. A brief description
of each model included in our comparison follows:

1. sa-PGSS: The state-augmented Poisson-gamma state space model where the dynamic discount fac-
tor, γt evolves over time via the transition equation defined in equation (12).

2. PGSS-random: The Poisson-gamma state space model where γ is assumed to be static but ran-
dom. We assume that the prior distribution of γ is a uniform discrete distribution defined over
{0.01, 0.02, . . . , 0.99}, an approach considered in Aktekin et al. (2013). The posterior distribution
of γ is then obtained via

p(γ|Dt) ∝ p(γ)
t∏

s=1

p(Ns|Ds−1, γ),

where p(Ns|Ds−1, γ) is the negative binomial marginal likelihood from (8).

3. PGSS-deterministic: The Poisson-gamma state space model where the discount factor γt evolves
dynamically but in a deterministic manner as considered by Chen et al. (2018b). More specifically,
γt is assumed to exhibit the following functional form

γt = d+ (1− d) exp(−kαt−1),

where d represents the baseline, k is a tuning parameter controlling the speed of the information
decay, and αt−1 is the shape parameter of the time t − 1 posterior distribution from (4). The
motivation of using the above specification stems from scenarios with zero counts and to mitigate
the numerical issues caused by extremely small αt−1’s. When αt−1 is large, the exponential term
approaches zero and γt ≈ d, leading to an approximately constant discount factor. In Chen et al.
(2018b) and our study, the decay parameter is set to k = 1. Formally, the optimal value of d can be
estimated using an empirical Bayes approach as in

d∗ = arg max{p(d|DT )} = arg max
{
p(d)

T∏
t=1

p(Nt|Dt−1, d)
}
,

with some constraint on the support of d, such as d ∈ (0.9, 1). In the case study of Fox News dataset,
d = 0.9 is obtained by following this procedure with the training dataset. We choose d = 0.9 for the
other datasets, the simulated and UBER data, where the training dataset is not available.

Performance Measures

In assessing the model performance in each case study, we consider three performance measures: (i)
mean absolute percent error (MAPE) for assessing the predictive performance; (ii) the posterior model
probability for assessing/monitoring the online model fit performance; and (iii) the marginal log-likelihood.
MAPE is a standard measure of predictive performance and is defined as

MAPEt =
100

t

t∑
s=1

|Ns − fs|
Ns

,

where ft is the point forecast of Nt at t − 1; in our study, ft is the posterior mean or median of the
one-step ahead predictive distribution p(Nt|Dt−1) for simplicity, although the optimal point forecast for
the standard of MAPE can also be considered (e.g., Berry et al. 2018, Section 3.3.2).
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The posterior model probability p(M|Dt) for modelM∈ {sa-PGSS, PGSS-random, PGSS-deterministic}
is used to monitor the online model fit. Particularly, p(M|Dt) can help us identify when and why a partic-
ular model outperforms others. For instance, in count data with sudden bursts and/or structural breaks,
p(M|Dt) can provide simple to interpret visual guidance. In addition, one can also consider p(M|Dt) to
assess different choices of hyperparameters, computational methodologies, and particle sizes.

In order to compute p(M|Dt), the marginal likelihood is needed and analytically available through
(the sum of) (8) in the PGSS family of models. For instance, in the sa-PGSS model, the log marginal
likelihood can be computed as a mixture as in

log p(Nt|Dt−1) =

∫
log p(Nt|Dt−1, γt, αt−1, βt−1)p(γt, αt−1, βt−1|Dt−1)d(γt, αt−1, βt−1)

=
1

S

S∑
i=1

log p(Nt|Dt−1, γit , αit−1, βit−1)

where the density of (Nt|Dt−1, γt, αt−1, βt−1) is the negative binomial distribution given by equation (11).
In the above, the particle set, (γit , α

i
t−1, β

i
t−1), is obtained by augmenting (γit−1, α

i
t−1, β

i
t−1, ϑ

i) with γit
through p(γt|γit−1, ϑi). We remark here that the state variable, θt, is integrated out of (Nt|Dt−1, γt, αt−1, βt−1)
(”Rao-Blackwellized”) which reduces the overall computational burden significantly.

Computational Details and Performance

The computations for all three case studies are implemented in Ox (Doornik, 2007) on a laptop computer
with Intel Core i7-7500U CPU 2.70GHz, 2.90GHz, RAM-8GB specifications. Table 1 summarizes the
actual time (in seconds) of sampling the online joint posterior distribution, p(θt, γt, ϑ|Dt) using PF and
MCMC methods. For instance, in the Fox News example, the time for completing the update ofN = 5, 000
particles from time period t to t + 1 for the PF algorithm (without any explicit parallelization) is 0.27
seconds on average, and 0.328 at maximum for t = 0 : T − 1. Conversely, the estimation of the online
posterior at time t = T using an MCMC algorithm with an independent Metropolis-Hastings step is
approximately equal to 65.85 seconds. The details of the MCMC algorithm (5000 iterations after a 500
burn-in period) can be found in the Appendix. We note here that, for the Fox News example, each time
period is 30 seconds long, and the MCMC approach far exceeds this threshold. As the dimension of T gets
larger, the computational burden for the MCMC method exponentially increases while the PF algorithm
stays around the same as evidenced by the Uber example with T = 287.

Table 1: Summary of computational performance in seconds.

Simulation (T = 99) Fox News (T = 99) UBER (T = 287)

PF (Avg) 0.264 0.270 0.274
PF (Max) 0.297 0.328 0.547

MCMC 64.947 65.858 577.542

5.1 Case 1: Simulated Data

To assess the performance of the sa-PGSS model, we considered a simulated set that clearly exhibits
structural breaks. The data are generated from a non-homogeneous Poisson model via Nt ∼ Po(θ∗t )
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independently, where

θ∗t =


80 t ∈ 1:30
100, 120, 140, 160, 180 t = 31, 32, 33, 34, 35, resp.
200 t ∈ 36:65
185, 170, 155, 140, 125 t = 66, 67, 68, 69, 70, resp.
110 t ∈ 71:100

(18)

In the simulation design, two relatively slow-to-build structural breaks are represented at time points
t = 31 and t = 66 with structural shifts occurring shortly after (see the red lines on Figures 2a, 2b,
and 2c). The overall pattern of the simulated set roughly mimics that of the Fox News example with
steeper and clearer breaks. The simulation design allows us to investigate the flexibility of the sa-PGSS
model in adopting to sudden surges in the count data without the need for more complex models (such
as hidden Markov models) that are computationally expensive and thus are not suitable for fast online
learning/forecasting.
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Figure 2: Online posterior distributions of θt with mean (blue, solid) and 95% credible intervals (blue,
dashed) and the true values of θ∗t (red, solid) with the observed counts (+). The three figures, (a), (b)
and (c), corresponds to sa-PGSS, PGSS-random and PGSS-deterministic models, respectively. Compared
with the posterior of sa-PGSS in (a), that of PGSS-random in (b) is volatile and overly adaptive in t ≥ 71.
The posterior of PGSS-determinisic in (c) is too persistent for the changes of true Poisson rates.

Figures 2a, 2b, and 2c display the online state posterior distributions with the respective 95% credibil-
ity intervals for all three models where the straight red line represents the level of the true state variable,
θt. The posterior uncertainty provided by the sa-PGSS model in Figure 2a exhibits a fairly quick adaptive
behavior to the sudden changes on the level. In Figure 2b, the PGSS-random model also seems to provide
flexible coverage at first glance, with some excessive overfitting right around the second state change at
t = 71. In contrast, the posterior coverage provided by the PGSS-deterministic model from Figure 2c
clearly shows the shortcomings of the base PGSS model with a deterministic discount factor as evidenced
by its inability to adopt to the sudden changes in the level.

To further investigate the online fit performances around and at the inflation points, we computed
the cumulative mean squared error (MSE) estimates over time via

MSEt =
1

t

t∑
s=1

(E[θs|Ds]− θ∗s)2,

where θ∗s represents the true value of the Poisson rate at time s given in equation (18). The overall
pattern of the MSEs for all three models are shown in Figure 3. Right after the first change-point, the
PGSS-deterministic model provides the worst coverage with respect to the other two models with random

12



discount factors. The encouraging finding here is that the sa-PGSS model consistently outperforms the
PGSS-random model strictly after the first change-point (around t = 31). This may be explained by
plotting the estimated paths of discount factor γ for both models. For lower values of γ, the PGSS model
tends to over-fit the data (i.e., posterior mean estimates will follow recently observed data too closely).

sa­PGSS 

PGSS­deterministic 

PGSS­random 

 

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 MSE

sa­PGSS 

PGSS­deterministic 

PGSS­random 

 

Figure 3: The mean squared errors (scaled by 104) for the sa-PGSS (red), PGSS-random (blue), and PGSS-
deterministic (green) models. The MSE estimates for the PGSS-deterministic model are extremely large with respect
to the other two models and after t = 31 (the first switching point) are beyond the borders of the figure in this
scale.

Figures 4 and 5 show the estimated paths of the posterior means and the respective 95% credible
intervals of the discount factors of the sa-PGSS (via γt) and PGSS-random (via γ) models. For the sa-
PGSS model, the initial γt estimates are high (close to 1) followed by a steep drop right after the first
change point (t = 31). Another drop can be observed at the second change point (t = 70), beyond
which the discount factor gradually increases back to higher levels. The path of γ for the PGSS-random
model tells a similar story during the first 31 time points with a steep decrease at the change point.
However, after the second change point, the PGSS-random model is unable to push γ back to the region
of 0.9 to 1, unlike the sa-PGSS model. We believe that this sheds light on the dominance previously
observed in the MSE estimates from Figure 3, as the PGSS-random model is unable to recover the true
value of γ, especially after the second break point. The dynamic nature of γt in the sa-PGSS model
allows the posterior distribution to shift between high values (when θt’s are similar or close to identical)
and low values (when θt’s are not similar, which occurs at the breaks). These structural breaks can also
be identified by the sudden dips in the ESS estimates from Figure 4, once again occurring at t = 31
and t = 70. Severe and sudden drops in ESS estimates can be used as a formal monitoring tool for
identifying structural breaks in automated machine learning settings, alerting the potential need for
human intervention.

In terms of online model fit and predictive performance (marginal likelihoods, model probabilities,
and MAPE estimates), the sa-PGSS model mostly outperforms the other two models. Figure 6 shows
the posterior model probabilities for all three models, where equal prior probabilities are assumed. One
noteworthy observation is that the PGSS-random is found to be the best model during the initial 30
observations. This is expected since there is no need for a dynamically changing discount factor until
t = 30, as the simulation design implies that γ should be equal to 1 in this epoch (e.g., θ1:30 are the
same). After the first change point, sa-PGSS becomes the dominant model and continues to outperform
others due to its ability to rapidly adapt to the new level of the generated counts. A similar argument
can be made around the second change point where the sa-PGSS model gradually starts dominating the
other two models with a steep increase in model probabilities after a few observations. In a similar
vein, the results from the MAPE estimates from Figure 7 also confirms the findings implied by the model
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Figure 4: The means and credible intervals of the posterior of dynamic discount factor, p(γt|Dt) (blue), and the
ESS over time (red). Both discount factor and ESS are lowered when the true Poisson rates started to change. The
posterior of discount factors starts to increase after t ≥ 71.
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Figure 5: The median (+ symbols) and credible intervals of the posterior of constant discount factor, p(γ|Dt).
Unlike the postrior results of sa-PGSS in Figure 4, once the discount factor is lowered, it remains to be aounrd
0.4-0.5 and never increases.
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probabilities where the sa-PGSS model consistently outperforms the other models after the first change
point. It is worth mentioning here that, in the first 30 time points, the difference between the three
models is small. The difference becomes visually clearer at the two time points of structural change. A
summary of the mean and the median MAPEs are shown in Table 2 which fails to highlight the superior
performance of the sa-PGSS model at the structural breaks but provides a general overall summary.

In summary, our goal was to develop a highly adaptable PGSS model suitable for sequential parameter
learning and online demand forecasting of counts with structural breaks. In doing so, we focused on
developing a fast and efficient particle based algorithm while avoiding traditional MCMC methods that
are found to increase computational burden significantly. The summary of results discussed previously
based on the simulated study confirms that our proposed sa-PGSS model performs extremely well in terms
of online model fit and predictive performances when compared against two other modeling strategies
from the PGSS literature.
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Figure 6: The posterior model probabilities of sa-PGSS (red), PGSS-random (blue), and PGSS-deterministic (pink)
with equal prior probabilities. After the first change of Poisson rate, sa-PGSS becomes the best model for its
adaptivity and predictive performance. The second change favors PGSS-random temporaly, but soon sa-PGSS
increase its model probabillity for its high discount factor that is more suitable for the stable process of counts.
PGSS-deterministic is outperformed by the other models.

Table 2: Overall summary of predictive performances

MAPE (%) Simulation Fox News UBER
median mean median mean median mean

sa-PGSS 9.55 9.60 10.38 10.34 30.71 30.83
PGSS-random 9.98 10.06 9.03 9.00 30.82 31.29
PGSS-deterministic 17.63 17.64 14.94 14.90 55.08 55.87

5.2 Case 2: Fox News Web Traffic Demand

To illustrate the implementation of the sa-PGSS model in a setting where fast online learning, monitoring,
and prediction are essential, we consider web traffic data from the Fox News website. Robust forecasting
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Figure 7: The mean absolute percentage errors (MAPEs) of of sa-PGSS (red), PGSS-random (blue), and PGSS-
deterministic (green). In the first 30 observations, there is no clear difference between the three models. The
PGSS-deterministic is clearly outperformed by the other two models. The proposed sa-PGSS model is slightly
better in predictions than the PGSS-random model.

and real-time monitoring systems of web traffic are of great interest to many e-commerce firms, as optimal
online ad placement and efficient web server maintenance are top priorities. Chen et al. (2018b) present
a thorough analysis of the Fox News data set utilizing the PGSS-dterministic model, and in this section
we benchmark the sa-PGSS model’s forecasting performance and model fit to both the PGSS-random and
PGSS-deterministic models. The data itself was obtained from the raw access log of the Fox News website,
which is a collection of individual URL access logs (date and time) and is the flow (number of accesses)
from one category of news articles to another. The counts are observed at 30 second intervals, which
precludes standard forward filtering backward sampling techniques. For our illustration, we consider one
particular flow from the top (main) page of the website to the category titled “World” between 9:05 and
9:55 AM on February 23rd 2015. The first observation at 9:05 is omitted from the series, as it is set equal
to the hyperparameter of the initial state prior α0. The total length of the time series is T = 99. Our goal
is to forecast the number of visitors navigating to the “World” section 30 seconds in advance, allowing
advertising impressions to be optimally allocated across sections.

It is visually evident in Figure 8 that the sa-PGSS model yields significantly better one-step-ahead
predictions when there is a surge in the web traffic around 9:25. Forecasts from the PGSS-deterministic
model do not quickly adapt to such a sudden change in counts, highlighting the need for more flexible
discounting strategies. The estimation paths of γt and ESS are shown in Figure 9a, where the drop in the
posterior mean of γt and the ESS coincide with the sudden shifts in the web traffic counts, a property
that the PGSS-deterministic model fails to capture. The MAPE summary from Table 2 confirms that the
sa-PGSS model has better predictive performance with respect to the PGSS-deterministic model. The
PGSS-random outperforms the sa-PGSS model in the MAPE for the Fox News dataset; this is because the
sa-PGSS takes a few observations before decreasing its discount factor for the drop of counts in 9:40-9:50
to avoid being overfitting, as evident in Figure 9a.

The AR model structure and informative prior distributions mimic a constant discount factor when
called for by the data, enabling us to sharply estimate the dynamic discount factor γt in stable epochs.
The effect of using informative priors on the hyperparameters, ϑ = (µ, φ, σ2), in the AR model of γt can
be observed in Figure 9b. The posterior distribution paths of µ, φ, and σ2 are quite stable, especially

16



during the first 20 minutes before the sudden surge in the traffic. While the prior is informative, it is
sufficiently diffuse, placing moderate prior mass on lower values of γt (refer to Figure 1b). Observe the
drop in location parameter µ and increased variance σ2 from 9:20-9:23. The changes in posteriors for
µ, φ, and σ2 translate to a drop in γt from 9:20-9:23 but with increased uncertainty (see Figure 9a). Our
analysis shows that, despite the relatively strong priors on the AR parameters ϑ = (µ, φ, σ2), the posterior
distributions quickly respond to changes in the level of the web traffic data.
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Figure 8: One step ahead predictive distributions of Nt for the sa-PGSS (red) and PGSS-deterministic (green)
models, revisiting the dataset used in Figure 1a. The sa-PGSS model is able to change its predictive location
flexibly in 9:25-9:30 and 9:50-9:55, while it makes stable predictions that are almost identical to those of the
PGSS-deterministic model in 9:05-9:25 and 9:40-9:45.
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(a) Posterior of γt and ESS.
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Figure 9: Left: Online posterior median and 95% credibility intervals for γt (top) and the ESS (bottom).
The drop of discount factors can be seen only in the time of sudden changes in observed counts. Right:
Online posterior of AR(1) parameters, i.e., p(logit−1(µ)|Dt), p(φ|Dt) and p(σ2|Dt). The informative prior
chosen for this analysis is affected only by the sudden burst in 9:25.
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5.3 Case 3: Uber Demand

The final online learning and prediction example that we consider is from the ridesharing platform Uber.
In July 2016, Uber completed an average of 5.5 million rides per day (Dickey, 2017). As the global market
for ridesharing has expanded, reliable forecasts of demand have become increasingly important in dy-
namic pricing algorithms. Here, we generate ten-minute-ahead forecasts of the number of requested Uber
pickups using the sa-PGSS, PGSS-deterministic, and PGSS-random models. The data in our analysis is cre-
ated from the Uber call log in the state of New York, which was made publicly available as part of a Free-
dom of Information Law request by the website Five Thirty Eight. The data can be accessed online at the
GitHub page of Five Thirty Eight, https://github.com/fivethirtyeight/uber-tlc-foil-response.

We focus on pickups in the East Village of Manhattan (location ID 79) on Friday May 1st and Saturday
May 2nd in 2015. The calls are binned in 10 minute time intervals, and the observations start at 5:00AM
on May 1st and end at 4:55AM on Sunday May 3rd. As before, the first observation is excluded from
the study in order to initialize parameters, which yields a total of 287 observations. Observe in Figure
10a that dynamics in the Uber demand data are relatively smoother and more cyclical when compared
to the simulated and Fox News data. While this particular set of Uber ride requests does not exhibit clear
structural breaks or sudden surges, it is expected that Uber does confront sharp and unexpected increases
in demand.
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(a) sa-PGSS vs PGSS-deterministic
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Figure 10: Top: The posterior medians (solid) and 95% credible intervals (dashed) for the sa-PGSS
(green) and PGSS-deterministic (grey) models. Bottom: The posterior medians (solid) and 95% credible
intervals (dashed) for the sa-PGSS (green) and PGSS-random (blue) models. Again, the predictions
by the PGSS-deterministic are not adaptive to the trend of counts. In the absence of clear bursts, the
prediction by sa-PGSS is almost identical to that of PGSS-deterministic, requiring no further adjustment.

The intraday and interday dynamics of pick-up calls are illustrated in Figures 10a and 10b, which
also present the median and 95% credible interval for one-step-ahead predictive distributions. There
are three surges in demand observed over the 48 hour span: the first increase in demand occurs from
6:00-10:00 AM on May 1st can be attributed to the morning commute on a weekday; the second surge
in demand peaks at 0:00 (midnight on Friday) and is attributed to the increase in late night activity on
a Friday night; a third peak starts late Saturday morning and continues to build throughout the day and
into the evening, peaking at midnight on Saturday. Most of these observable and deterministic trends
can be captured by incorporating covariates into our sa-PGSS model; however, the inclusion of covariates
in the PGSS framework presents significant computational difficulties for online learning and forecasting
that are beyond the scope of this paper. Our current aim is to investigate how well the PGSS family of
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models perform in the absence of covariate effects.
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Figure 11: Evolution of γt (top) and ESS (bottom) over
time for the sa-PGSS model. More uncertainty can be seen
in the posterior of discount factors, for the time series of
counts keep changing its location over time.

Predictions from the sa-PGSS and PGSS-
random models provide similar coverage in track-
ing these trends where most observations are
within the 95% credible intervals. In contrast,
predictions from the PGSS-deterministic model ap-
pear to lag behind in following the intraday Uber
demand dynamics. This is visually evident in Fig-
ure 10a and clear from the MAPE estimates in Ta-
ble 2. The similar predictive performance of the
sa-PGSS and PGSS-random models is explained by
the evolution of the posterior distribution of γt,
shown in Figure 11. Unlike the simulated and web
traffic examples, the online posterior distribution
is fairly stable over time with no sudden dips or
surges (as there are no structural breaks or sudden
bursts in the Uber data). The posterior distribution
of γ of the PGSS-random model (not shown here)
also concentrates on values between 0.6 to 0.7. In
summary, sa-PGSS model performs comparably to
the PGSS-random model in terms of its predictive performance when the count level build-up is smooth
and cyclical in nature. We remark here that structural breaks in ride sharing demand data can be ob-
served at uncommon times such as the end of a concert, sports game, conference, or some other event,
where the sa-PGSS model would deliver improved predictions of future demand.

6 Discussion

Many e-commerce platforms continually allocate resources to meet sudden bursts in consumer demand.
Bursty phenomena arise in ridesharing (Uber, Lyft), online advertising (Facebook, Google, ...), customer
call centers (Liberty Mutual, GEICO), and rapid-delivery online retailing (Amazon’s Prime Now and Fresh
services). In each case, consumer demand is a count of the number of units (rides, ad impressions, prod-
ucts) requested at a single point in time, and it is natural for demand to fluctuate throughout the hour,
day, or week. The challenge is to statistically model sudden bursts in observed counts while facilitating
rapid, online estimation of model parameters. In the e-commerce settings considered, resource allocation
decisions are made on the order of seconds to minutes, and balancing model complexity and computa-
tional speed is imperative. Markov switching models, the standard approach to modeling regime changes
in time series data, require intensive computational algorithms not amenable to rapid, online learning
and forecasting.

In this paper, we introduced a Poisson-gamma state-space model whose state evolution structure
is flexible and responsive to sudden changes in the level of demand. This is achieved by augmenting
the state vector of the PGSS model class with a dynamic discount factor, whose temporal evolution
is modeled with an autoregressive process. Modeling the discount factor as a dynamic state variable is
methodologically novel, as current approaches treat the discount factor as either a fixed tuning parameter,
a random (static) parameter, or a deterministically time-varying quantity. Through the dynamic discount
factor, the contribution of previously observed data to parameter updates varies according to recent
volatility in observed counts. When counts are stable and persistent, the discount factor is close to one,
and variance in the one-step-ahead predictive distribution tightens. When counts undergo large sudden
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changes, the discount factor drops toward zero, and variance in the one-step-ahead predictive distribution
increases. Data-driven tightening and inflating of variance in forecasts is a critical feature of the sa-PGSS
model, allowing it to (i) quickly respond to bursts in observed counts, (ii) reduce prediction errors, and
(iii) improve sequential model fit.

We developed a particle-based algorithm that harnesses closed-form conditional sufficient statistics to
rapidly estimate dynamic state variables and static parameters. We find that the PF algorithm is ∼250
times faster than comparable MCMC methods when the time series has 100 observations (see Table 1).
As the time series lengthens, the relative speed gap between our PF algorithm and MCMC significantly
widens. To illustrate the advantages of our proposed model, we considered simulated as well as real
case studies in web traffic and ride sharing demand. In the presence of structural breaks, the sa-PGSS
model outperforms the base PGSS model class in terms of both model fit and predictive performance. An
important finding of our study is that when level changes in counts are gradual, the dynamic discount
factor embedded in the sa-PGSS offers no practical advantage over the base PGSS model where a constant
discount factor is estimated from data (see Figure 10b). The comparative advantage of the sa-PGSS model
is in applications where observed counts undergo sudden bursts.

Many modern applications involve analysis of multiple time series that exhibit auto and cross-sectional
correlations. For example, Uber rides requested at nearby locations likely exhibit rich temporal and cross-
series structure. Not only are the time series of pick-up requests spatially related, but the pick-up locations
themselves may have defining characteristics that explain variation in the number of requests. These ap-
plied challenges call for a multivariate extension of the sa-PGSS model that includes covariates; however,
extending the sa-PGSS model to a multivariate setting with covariates presents significant technical dif-
ficulties beyond the scope of our current paper. While we recognize the current limits of the sa-PGSS
model, we believe that it offers significant promise for scaling online learning, monitoring, and forecast-
ing of bursty count data to higher dimensions.
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Appendix: Markov chain Monte Carlo Algorithm for the sa-PGSS Model

In what follows, we present a summary of steps of the MCMC algorithm that is an alternative for the
proposed PF algorithm. The goal is to generate samples from the full joint posterior distribution of
state as well as static parameters, p(θ1:t, γ1:t, ϑ|Dt), in a sequential manner. This can be achieved via the
following steps:

1. Sampling θ1:t

Given γ1:t and ϑ, sampling from the conditional posterior p(θ1:t|γ1:t, ϑ,Dt) can be done by forward
filtering and backward sampling. First, we compute (a1:t, b1:t) by forward filtering. Next, we sample
from θt ∼ Ga(at, bt). Recursively, at each s < t, we sample θs based on the distributional relation
θs = γsθs+1 +Ga((1− γs)as, bs).

2. Sampling ϑ

The conditional posterior of p(ϑ|θ1:t, γ1:t,Dt) is given in Section 3 where the normal-inverse gamma
distribution for the transformed parameters are shown. Same approach can be followed here.

3. Sampling γ1:t

This is the hardest part of the MCMC algorithm to implement. We take the single-mover sampler
approach and consider the sampling of each γs for s = 1:t. The conditional posterior is written as
(e.g., for 0 < s < t)

p(γs|θ1:t, γ1:t\s, ϑ,Dt) ∝ p(gs+1|gs, ϑ)p(gs|gs−1, ϑ)

t∏
u=s

p(θu|θu−1, γ1:u,Du−1) (19)

where the transition density of states is that of the scaled-beta distribution,

p(θu|θu−1, γ1:u,Du−1) =
1

Be(γuau−1, (1− γu)au−1)(
γu
θu−1

)γuαu−1

θγuαu−1−1
u

(
1− γu

θu−1
θu

)(1−γu)αu−1−1 (20)

Note that γs is involved implicitly in p(θu|θu−1, γ1:u,Du−1) for not only u = s but also u > s through
the sufficient statistics αu that is sequentially updated by, for example, αs+1 = γsαs +Ns.

The sampling from equation (19) is the key in the implementation of the MCMC algorithm. The
common approach is to use a random-walk Metropolis Hastings step where t tuning parameters are
required in addition to many iterations, making this is an unattractive solution. As an alternative, an
independent Metropolis Hastings step with a Gaussian proposal density can be considered which requires
the computation of the gradient and the Hessian of the density in (19) in the log scale. To speed up the
estimation, we propose to sample from

q(gs) ∝ p(gs+1|gs, ϑ)p(gs|gs−1, ϑ)

and accept the generated particle gnewt with acceptance probability

P [golds → gnewt ] = max

{
1,

t∏
u=s

p(θu|θu−1, γ1:u\s, γnews ,Du−1)
p(θu|θu−1, γ1:u\s, γolds ,Du−1)

}
.
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